Synthesis, Characterization, and Reactivity of Group 4 Metalloporphyrin Diolate Complexes
Author(s) -
Guodong Du,
L. Keith Woo
Publication year - 2002
Publication title -
organometallics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.231
H-Index - 172
eISSN - 1520-6041
pISSN - 0276-7333
DOI - 10.1021/om020790g
Subject(s) - chemistry , reactivity (psychology) , medicinal chemistry , cleavage (geology) , hafnium , stereochemistry , bond cleavage , organic chemistry , zirconium , catalysis , medicine , alternative medicine , geotechnical engineering , pathology , fracture (geology) , engineering
A number of group 4 metalloporphyrin diolate complexes were synthesized via various approaches. For example, treatment of imido complex (TTP)HfNAriPr with diols resulted in formation of the corresponding diolato complexes (TTP)Hf[OCR1R2CR1R2O] (R1 = R2 = Me, 1; R1 = Me, R2 = Ph, 2; R1 = R2 = Ph, 3). Treatment of (TTP)TiNiPr with diols generated (TTP)Ti[OCR1R2CR1R2O] (R1 = R2 = Me, 5; R1 = Me, R2 = Ph, 6; R1 = H, R2 = Ph, 7; R1 = H, R2 = p-tolyl, 8). Alternatively hafnium and titanium pinacolates 1 and 5 were prepared through metathetical reactions of (TTP)MCl2 (M = Hf, Ti) with disodium pinacolate. The substitution chemistry of hafnium complexes correlated well with the basicity of the diolato ligands. Complexes 1−6 underwent oxidative cleavage reaction, producing carbonyl compounds and oxometalloporphyrin species. For less substituted diolates 7 and 8, an array of products including the enediolate complexes (TTP)Ti[OC(Ar)C(Ar)O] (Ar = Ph, 9; Ar = p-tolyl, 10) was observed. The possible cleavage reaction ...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom