z-logo
open-access-imgOpen Access
Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation
Author(s) -
Bin Wang,
Jianlan You,
Jarrod B. King,
Shengxin Cai,
Elizabeth M. Park,
Douglas R. Powell,
Robert H. Cichewicz
Publication year - 2014
Publication title -
journal of natural products
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.976
H-Index - 139
eISSN - 1520-6025
pISSN - 0163-3864
DOI - 10.1021/np500531j
Subject(s) - candida albicans , biofilm , microbiology and biotechnology , metabolome , biology , polyketide , glycoside , fungus , corpus albicans , yeast , candida parapsilosis , bacteria , metabolite , biochemistry , botany , biosynthesis , enzyme , genetics
One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens' susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C-F (1-4)] and three new [bionectriols B-D (5-7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom