z-logo
open-access-imgOpen Access
Engineering Advanced Capsosomes: Maximizing the Number of Subcompartments, Cargo Retention, and Temperature-Triggered Reaction
Author(s) -
Rona Chandrawati,
Leticia HostaRigau,
Dirk Vanderstraaten,
Shalitha A. Lokuliyana,
Brigitte Städler,
Fernando Alberício,
Frank Caruso
Publication year - 2010
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn901843j
Subject(s) - liposome , polymer , materials science , nanotechnology , template , enzyme , tissue engineering , chemical engineering , biophysics , chemistry , biochemistry , biomedical engineering , biology , medicine , engineering , composite material
Advanced mimics of cells require a large yet controllable number of subcompartments encapsulated within a scaffold, equipped with a trigger to initiate, terminate, and potentially restart an enzymatic reaction. Recently introduced capsosomes, polymer capsules containing thousands of liposomes, are a promising platform for the creation of artificial cells. Capsosomes are formed by sequentially layering liposomes and polymers onto particle templates, followed by removal of the template cores. Herein, we engineer advanced capsosomes and demonstrate the ability to control the number of subcompartments and hence the degree of cargo loading. To achieve this, we employ a range of polymer separation layers and liposomes to form functional capsosomes comprising multiple layers of enzyme-loaded liposomes. Differences in conversion rates of an enzymatic assay are used to verify that multilayers of intact enzyme-loaded liposomes are assembled within a polymer hydrogel capsule. The size-dependent retention of the cargo encapsulated within the liposomal subcompartments during capsosome assembly and its dependence on environmental pH changes are also examined. We further show that temperature can be used to trigger an enzymatic reaction at the phase transition temperature of the liposomal subcompartments, and that the encapsulated enzymes can be utilized repeatedly in several subsequent conversions. These engineered capsosomes with tailored properties present new opportunities en route to the development of functional artificial cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom