z-logo
open-access-imgOpen Access
Functional Delivery of siRNA in Mice Using Dendriworms
Author(s) -
Amit Agrawal,
DalHee Min,
Neetu Singh,
Haihao Zhu,
Alona Birjiniuk,
Geoffrey von Maltzahn,
Todd J. Harris,
Deyin Xing,
Stephen D. Woolfenden,
Phillip A. Sharp,
Alain Charest,
Sangeeta N. Bhatia
Publication year - 2009
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn900201e
Subject(s) - gene knockdown , endosome , small interfering rna , in vivo , microbiology and biotechnology , rna interference , gene silencing , biology , gene delivery , epidermal growth factor receptor , cancer research , chemistry , rna , transfection , gene , receptor , biochemistry , genetics , intracellular
Small interfering RNAs (siRNAs) mediate cleavage of specific, complementary mRNA sequences and thus regulate gene expression. Not surprisingly, their use for treatment of diseases that are rooted in aberrant gene expression, such as cancer, has become a paradigm that has gained wide interest. Here, we report the development of dendrimer-conjugated magnetofluorescent nanoworms that we call "dendriworms" as a modular platform for siRNA delivery in vivo. This platform maximizes endosomal escape to robustly produce protein target knockdown in vivo, and is tolerated well in mouse brain. We demonstrate that siRNA-carrying dendriworms can be readily internalized by cells and enable endosomal escape across a wide range of loading doses, whereas dendrimers or nanoworms alone are inefficient. Further, we show that dendriworms carrying siRNA against the epidermal growth factor receptor (EGFR) reduce protein levels of EGFR in human glioblastoma cells by 70-80%, 2.5-fold more efficiently than commercial cationic lipids. Dendriworms were well-tolerated after 7-days of convection-enhanced delivery to the mouse brain and in an EGFR-driven transgenic model of glioblastoma, anti- EGFR dendriworms led to specific and significant suppression of EGFR expression. Collectively, these data establish dendriworms as a multimodal platform that enables fluorescent tracking of siRNA delivery in vivo, cellular entry, endosomal escape, and knockdown of target proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom