z-logo
open-access-imgOpen Access
Increasing Redundancy Exponentially Reduces Error Rates during Algorithmic Self-Assembly
Author(s) -
Rebecca Schulman,
Christina Wright,
Erik Winfree
Publication year - 2015
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn507493s
Subject(s) - redundancy (engineering) , computation , computer science , exponential growth , algorithm , error detection and correction , word error rate , bitwise operation , theoretical computer science , computer engineering , mathematics , artificial intelligence , mathematical analysis , programming language , operating system
While biology demonstrates that molecules can reliably transfer information and compute, design principles for implementing complex molecular computations in vitro are still being developed. In electronic computers, large-scale computation is made possible by redundancy, which allows errors to be detected and corrected. Increasing the amount of redundancy can exponentially reduce errors. Here, we use algorithmic self-assembly, a generalization of crystal growth in which the self-assembly process executes a program for growing an object, to examine experimentally whether redundancy can analogously reduce the rate at which errors occur during molecular self-assembly. We designed DNA double-crossover molecules to algorithmically self-assemble ribbon crystals that repeatedly copy a short bitstring, and we measured the error rate when each bit is encoded by 1 molecule, or redundantly encoded by 2, 3, or 4 molecules. Under our experimental conditions, each additional level of redundancy decreases the bitwise error rate by a factor of roughly 3, with the 4-redundant encoding yielding an error rate less than 0.1%. While theory and simulation predict that larger improvements in error rates are possible, our results already suggest that by using sufficient redundancy it may be possible to algorithmically self-assemble micrometer-sized objects with programmable, nanometer-scale features.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom