Label-Free Optical Detection of Biomolecular Translocation through Nanopore Arrays
Author(s) -
Andrey Ivankin,
Robert Y. Henley,
Joseph Larkin,
Spencer Carson,
Michael Toscano,
Meni Wanunu
Publication year - 2014
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn504551d
Subject(s) - nanopore , biomolecule , nanofluidics , nanotechnology , materials science , biosensor , nanosensor , multiplexing , fabrication , optoelectronics , computer science , medicine , telecommunications , alternative medicine , pathology
In recent years, nanopores have emerged as exceptionally promising single-molecule sensors due to their ability to detect biomolecules at subfemtomole levels in a label-free manner. Development of a high-throughput nanopore-based biosensor requires multiplexing of nanopore measurements. Electrical detection, however, poses a challenge, as each nanopore circuit must be electrically independent, which requires complex nanofluidics and embedded electrodes. Here, we present an optical method for simultaneous measurements of the ionic current across an array of solid-state nanopores, requiring no additional fabrication steps. Proof-of-principle experiments are conducted that show simultaneous optical detection and characterization of ssDNA and dsDNA using an array of pores. Through a comparison with electrical measurements, we show that optical measurements are capable of accessing equivalent transmembrane current information.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom