z-logo
open-access-imgOpen Access
Universal Surface-Enhanced Raman Tags: Individual Nanorods for Measurements from the Visible to the Infrared (514–1064 nm)
Author(s) -
Alison McLintock,
Carlota A. Cunha-Matos,
Michele Zagi,
Owain R. Millington,
Alastair W. Wark
Publication year - 2014
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn503311d
Subject(s) - nanorod , materials science , raman scattering , raman spectroscopy , nanoparticle , nanotechnology , fluorescence , fluorophore , surface plasmon resonance , optics , physics
Surface-enhanced Raman scattering (SERS) is a promising imaging modality for use in a variety of multiplexed tracking and sensing applications in biological environments. However, the uniform production of SERS nanoparticle tags with high yield and brightness still remains a significant challenge. Here, we describe an approach based on the controlled coadsorption of multiple dye species onto gold nanorods to create tags that can be detected across a much wider range of excitation wavelengths (514-1064 nm) compared to conventional approaches that typically focus on a single wavelength. This was achieved without the added complexity of nanoparticle aggregation or growing surrounding metallic shells to further enhance the surface-enhanced resonance Raman scattering (SERRS) signal. Correlated Raman and scanning electron microscopy mapping measurements of individual tags were used to clearly demonstrate that strong and reproducible SERRS signals at high particle yields (>92%) were readily achievable. The polyelectrolyte-wrapped nanorod-dye conjugates were also found to be highly stable as well as noncytotoxic. To demonstrate the use of these universal tags for the multimodal optical imaging of biological specimens, confocal Raman and fluorescence maps of stained immune cells following nanoparticle uptake were acquired at several excitation wavelengths and compared with dark-field images. The ability to colocalize and track individual optically encoded nanoparticles across a wide range of wavelengths simultaneously will enable the use of SERS alongside other imaging techniques for the real-time monitoring of cell-nanoparticle interactions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom