Highly Reproducible Near-Field Optical Imaging with Sub-20-nm Resolution Based on Template-Stripped Gold Pyramids
Author(s) -
Timothy W. Johnson,
Zachary J. Lapin,
Ryan Beams,
Nathan C. Lindquist,
Sergio G. Rodrigo,
Lukáš Novotný,
SangHyun Oh
Publication year - 2012
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn303496g
Subject(s) - materials science , fabrication , wafer , raman spectroscopy , optics , near field scanning optical microscope , image resolution , fluorescence lifetime imaging microscopy , fluorescence , optoelectronics , nanotechnology , optical microscope , scanning electron microscope , medicine , alternative medicine , physics , pathology , composite material
With a template-stripping fabrication technique, we demonstrate the mass fabrication of high-quality, uniform, ultrasharp (10 nm) metallic probes suitable for single-molecule fluorescence imaging, tip-enhanced Raman spectroscopy (TERS), and other near-field imaging techniques. We achieve reproducible single-molecule imaging with sub-20-nm spatial resolution and an enhancement in the detected fluorescence signal of up to 200. Similar results are obtained for TERS imaging of carbon nanotubes. We show that the large apex angle (70.5°) of our pyramidal tip is well suited to scatter the near-field optical signal into the far-field, leading to larger emission enhancement and hence to a larger quantum yield. Each gold or silver pyramidal probe is used on-demand, one at a time, and the unused tips can be stored for extended times without degradation or contamination. The high yield (>95%), reproducibility, durability, and massively parallel fabrication (1.5 million identical probes over a wafer) of the probes hold promise for reliable optical sensing and detection and for cementing near-field optical imaging and spectroscopy as a routine characterization technique.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom