Orthogonal Amplification of Nanoparticles for Improved Diagnostic Sensing
Author(s) -
Vanessa M. Peterson,
Cesar M. Castro,
Hakho Lee,
Ralph Weissleder
Publication year - 2012
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn300536y
Subject(s) - nanomaterials , nanoparticle , bioorthogonal chemistry , nanotechnology , multiplexing , materials science , robustness (evolution) , computer science , chemistry , polymer chemistry , telecommunications , biochemistry , click chemistry , gene
There remains an ongoing need for fast, highly sensitive, and quantitative technologies that can detect and profile rare cells in freshly harvested samples. Recent developments in nanomaterial-based detection platforms provide advantages over traditional approaches in terms of signal sensitivity, stability, and the possibility for performing multiplexed measurements. Here, we describe a bioorthogonal, nanoparticle amplification technique capable of rapid augmentation of detection sensitivities by up to 1-2 orders of magnitude over current methods. This improvement in sensitivity was achieved by (i) significantly reducing background noise arising from nonspecific nanoparticle binding, (ii) increasing nanomaterial binding through orthogonal rounds of amplification, and (iii) implementing a cleavage step to improve assay robustness. The developed method allowed sensitive detection and molecular profiling of scant tumor cells directly in unpurified human clinical samples such as ascites. With its high sensitivity and simplified assay steps, this technique will likely have broad utility in nanomaterial-based diagnostics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom