Wide Contact Structures for Low-Noise Nanochannel Devices Based on a Carbon Nanotube Network
Author(s) -
Hyungwoo Lee,
Minbaek Lee,
Seon Namgung,
Seunghun Hong
Publication year - 2010
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/nn102296e
Subject(s) - carbon nanotube , materials science , noise (video) , nanotechnology , nanoscopic scale , computer science , artificial intelligence , image (mathematics)
We have developed a wide contact structure for low-noise nanochannel devices based on a carbon nanotube (CNT) network. This low-noise CNT network-based device has a dumbbell-shaped channel, which has wide CNT/electrode contact regions and, in effect, reduces the contact noise. We also performed a systematic analysis of structured CNT networks and established an empirical formula that can explain the noise behavior of arbitrary-shaped CNT network-based devices including the effect of contact regions and CNT alignment. Interestingly, our analysis revealed that the noise amplitude of aligned CNT networks behaves quite differently compared with that of randomly oriented CNT networks. Our results should be an important guideline in designing low-noise nanoscale devices based on a CNT network for various applications such as a highly sensitive low-noise sensor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom