Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells
Author(s) -
Xiaocheng Jiang,
JinSong Hu,
Alexander M. Lieber,
Charles S. Jackan,
Justin C. Biffinger,
Lisa A. Fitzgerald,
Bradley R. Ringeisen,
Charles M. Lieber
Publication year - 2014
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl503668q
Subject(s) - microbial fuel cell , nanoparticle , shewanella , nanotechnology , electron transfer , electron transport chain , shewanella oneidensis , materials science , electrode , chemistry , anode , bacteria , biology , biochemistry , organic chemistry , genetics
Microbial fuel cells (MFCs) have been the focus of substantial research interest due to their potential for long-term, renewable electrical power generation via the metabolism of a broad spectrum of organic substrates, although the low power densities have limited their applications to date. Here, we demonstrate the potential to improve the power extraction by exploiting biogenic inorganic nanoparticles to facilitate extracellular electron transfer in MFCs. Simultaneous short-circuit current recording and optical imaging on a nanotechnology-enabled platform showed substantial current increase from Shewanella PV-4 after the formation of cell/iron sulfide nanoparticle aggregates. Detailed characterization of the structure and composition of the cell/nanoparticle interface revealed crystalline iron sulfide nanoparticles in intimate contact with and uniformly coating the cell membrane. In addition, studies designed to address the fundamental mechanisms of charge transport in this hybrid system showed that charge transport only occurred in the presence of live Shewanella, and moreover demonstrated that the enhanced current output can be attributed to improved electron transfer at cell/electrode interface and through the cellular-networks. Our approach of interconnecting and electrically contacting bacterial cells through biogenic nanoparticles represents a unique and promising direction in MFC research and has the potential to not only advance our fundamental knowledge about electron transfer processes in these biological systems but also overcome a key limitation in MFCs by constructing an electrically connected, three-dimensional cell network from the bottom-up.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom