Nanovectorization of TRAIL with Single Wall Carbon Nanotubes Enhances Tumor Cell Killing
Author(s) -
Al Batoul Zakaria,
Fabien Picaud,
Thibault Rattier,
Marc Pudlo,
Lucien Saviot,
Rémi Chassag,
Jeannine Lherminier,
Tijani Gharbi,
Olivier Micheau,
Guillaume Herlem
Publication year - 2015
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl503565t
Subject(s) - apoptosis , tumor necrosis factor alpha , nanocarriers , cell , receptor , nanomedicine , cancer cell , chemistry , carbon nanotube , nanotechnology , cytotoxicity , cancer research , programmed cell death , microbiology and biotechnology , materials science , cancer , in vitro , drug delivery , medicine , biology , immunology , biochemistry , nanoparticle
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily. This type II transmembrane protein is able to bound specifically to cancer cell receptors (i.e., TRAIL-R1 (or DR4) and TRAIL-R2 (or DR5)) and to induce apoptosis without being toxic for healthy cells. Because membrane-bound TRAIL induces stronger receptor aggregation and apoptosis than soluble TRAIL, we proposed here to vectorize TRAIL using single-walled carbon nanotubes (SWCNTs) to mimic membrane TRAIL. Owing to their exceptional and revolutional properties, carbon nanotubes, especially SWCNTs, are used in a wide range of physical or, now, medical applications. Indeed due to their high mechanical resistance, their high flexibility and their hydrophobicity, SWCNTs are known to rapidly diffuse in an aqueous medium such as blood, opening the way of development of new drug nanovectors (or nanocarriers). Our TRAIL-based SWCNTs nanovectors proved to be more efficient than TRAIL alone death receptors in triggering cancer cell killing. These NPTs increased TRAIL pro-apoptotic potential by nearly 20-fold in different Human tumor cell lines including colorectal, nonsmall cell lung cancer, or hepatocarcinomas. We provide thus a proof-of-concept that TRAIL nanovector derivatives based on SWCNT may be useful to future nanomedicine therapies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom