A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
Author(s) -
Chong Liu,
Jinyao Tang,
Hao Ming Chen,
Bin Liu,
Peidong Yang
Publication year - 2013
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl401615t
Subject(s) - artificial photosynthesis , solar fuel , water splitting , nanowire , energy transformation , semiconductor , nanotechnology , materials science , modular design , chemical energy , solar energy , nanoscopic scale , nanostructure , optoelectronics , chemistry , photocatalysis , physics , computer science , catalysis , ecology , biochemistry , organic chemistry , biology , thermodynamics , operating system
Artificial photosynthesis, the biomimetic approach to converting sunlight's energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom