Heteroepitaxy of La2O3 and La2–xYxO3 on GaAs (111)A by Atomic Layer Deposition: Achieving Low Interface Trap Density
Author(s) -
Xinwei Wang,
Dong Lin,
Jingyun Zhang,
Yiqun Liu,
Peide D. Ye,
Roy G. Gordon
Publication year - 2012
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl3041349
Subject(s) - x ray crystallography , crystallography , materials science , physics , chemistry , diffraction , optics
GaAs metal-oxide-semiconductor devices historically suffer from Fermi-level pinning, which is mainly due to the high trap density of states at the oxide/GaAs interface. In this work, we present a new way of passivating the interface trap states by growing an epitaxial layer of high-k dielectric oxide, La(2-x)Y(x)O(3), on GaAs(111)A. High-quality epitaxial La(2-x)Y(x)O(3) thin films are achieved by an ex situ atomic layer deposition (ALD) process, and GaAs MOS capacitors made from this epitaxial structure show very good interface quality with small frequency dispersion and low interface trap densities (D(it)). In particular, the La(2)O(3)/GaAs interface, which has a lattice mismatch of only 0.04%, shows very low D(it) in the GaAs bandgap, below 3 × 10(11) cm(-2) eV(-1) near the conduction band edge. The La(2)O(3)/GaAs capacitors also show the lowest frequency dispersion of any dielectric on GaAs. This is the first achievement of such low trap densities for oxides on GaAs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom