Creation and Control of Two-Dimensional Electron Gas Using Al-Based Amorphous Oxides/SrTiO3 Heterostructures Grown by Atomic Layer Deposition
Author(s) -
Sang Woon Lee,
Yiqun Liu,
Jaeyeong Heo,
Roy G. Gordon
Publication year - 2012
Publication title -
nano letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/nl302214x
Subject(s) - atomic layer deposition , amorphous solid , heterojunction , materials science , layer (electronics) , substrate (aquarium) , electron mobility , atomic layer epitaxy , oxide , deposition (geology) , nanotechnology , perovskite (structure) , chemical engineering , optoelectronics , chemistry , crystallography , paleontology , oceanography , sediment , geology , engineering , metallurgy , biology
The formation of a two-dimensional electron gas (2-DEG) using SrTiO(3) (STO)-based heterostructures provides promising opportunities in oxide electronics. We realized the formation of 2-DEG using several amorphous layers grown by the atomic layer deposition (ALD) technique at 300 °C which is a process compatible with mass production and thereby can provide the realization of potential applications. We found that the amorphous LaAlO(3) (LAO) layer grown by the ALD process can generate 2-DEG (∼1 × 10(13)/cm(2)) with an electron mobility of 4-5 cm(2)/V·s. A much higher electron mobility was observed at lower temperatures. More remarkably, amorphous YAlO(3) (YAO) and Al(2)O(3) layers, which are not polar-perovskite-structured oxides, can create 2-DEG as well. 2-DEG was created by means of the important role of trimethylaluminum, Me(3)Al, as a reducing agent for STO during LAO and YAO ALD as well as the Al(2)O(3) ALD process at 300 °C. The deposited oxide layer also plays an essential role as a catalyst that enables Me(3)Al to reduce the STO. The electrons were localized very near to the STO surface, and the source of carriers was explained based on the oxygen vacancies generated in the STO substrate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom