Interfacial Bioorthogonal Cross-Linking
Author(s) -
Han Zhang,
Kevin T. Dicker,
Xian Xu,
Xinqiao Jia,
Joseph M. Fox
Publication year - 2014
Publication title -
acs macro letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.966
H-Index - 92
ISSN - 2161-1653
DOI - 10.1021/mz5002993
Subject(s) - bioorthogonal chemistry , tetrazine , template , materials science , hyaluronic acid , fabrication , nanotechnology , chemistry , click chemistry , combinatorial chemistry , organic chemistry , medicine , alternative medicine , pathology , biology , genetics
Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid ( k 2 284000 M -1 s -1 ) reaction between strained trans -cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom