PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers
Author(s) -
Mohiuddin Quadir,
Stephen W. Morton,
Zhou J. Deng,
Kevin E. Shopsowitz,
Ryan P. Murphy,
Thomas H. Epps,
Paula T. Hammond
Publication year - 2014
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/mp500162w
Subject(s) - nanocarriers , polymersome , copolymer , chemistry , click chemistry , drug delivery , micelle , combinatorial chemistry , biophysics , amphiphile , polymer chemistry , organic chemistry , polymer , aqueous solution , biology
Herein we report the potential of click chemistry-modified polypeptide-based block copolymers for the facile fabrication of pH-sensitive nanoscale drug delivery systems. PEG-polypeptide copolymers with pendant amine chains were synthesized by combining N-carboxyanhydride-based ring-opening polymerization with post-functionalization using azide-alkyne cycloaddition. The synthesized block copolymers contain a polypeptide block with amine-functional side groups and were found to self-assemble into stable polymersomes and disassemble in a pH-responsive manner under a range of biologically relevant conditions. The self-assembly of these block copolymers yields nanometer-scale vesicular structures that are able to encapsulate hydrophilic cytotoxic agents like doxorubicin at physiological pH but that fall apart spontaneously at endosomal pH levels after cellular uptake. When drug-encapsulated copolymer assemblies were delivered systemically, significant levels of tumor accumulation were achieved, with efficacy against the triple-negative breast cancer cell line, MDA-MB-468, and suppression of tumor growth in an in vivo mouse model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom