z-logo
open-access-imgOpen Access
Comparison of Conjugation Strategies of Cross-Bridged Macrocyclic Chelators with Cetuximab for Copper-64 Radiolabeling and PET Imaging of EGFR in Colorectal Tumor-Bearing Mice
Author(s) -
Dexing Zeng,
Yunjun Guo,
Alexander G. White,
Zhengxin Cai,
Jalpa Modi,
Riccardo Ferdani,
Carolyn J. Anderson
Publication year - 2014
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/mp500004m
Subject(s) - cetuximab , in vivo , chemistry , conjugate , epidermal growth factor receptor , colorectal cancer , cancer research , click chemistry , receptor , cancer , medicine , combinatorial chemistry , biochemistry , biology , mathematical analysis , microbiology and biotechnology , mathematics
Epidermal growth-factor receptor (EGFR) is overexpressed in a wide variety of solid tumors and has served as a well-characterized target for cancer imaging and therapy. Cetuximab was the first mAb targeting EGFR approved by the FDA for the treatment of metastatic colorectal and head and neck cancers. Previous studies showed that (64)Cu (T1/2 = 12.7 h; β(+) (17.4%)) labeled DOTA-cetuximab showed promise for PET imaging of EGFR-positive tumors; however the in vivo stability of this compound has been questioned. In this study, two recently developed cross-bridged macrocyclic chelators (CB-TE1A1P and CB-TE1K1P) were conjugated to cetuximab using standard NHS coupling procedures and/or strain-promoted azide-alkyne cycloaddition (SPAAC) methodologies. The radiolabeling and in vitro/vivo evaluation of the resulting cetuximab conjugates were compared. Improved Cu-64 labeling efficiency and high specific activity (684 kBq/μg, decay corrected to the end of bombardment) were obtained with the CB-TE1K1P-PEG4-click-cetuximab conjugate. Saturation binding assays indicated that the prepared cetuximab conjugates had comparable affinity (1.32-2.00 nM) in the HCT116 human colorectal tumor cell membranes. In the subsequent in vivo evaluation, (64)Cu-CB-TE1K1P-PEG4-click-cetuximab demonstrated more rapid renal clearance with a higher tumor/nontumor ratio than other (64)Cu-labeled cetuximab conjugates, and it shows the greatest promise for imaging and therapy of EGFR-positive tumors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom