z-logo
open-access-imgOpen Access
C-Ring Cannabinoid Lactones: A Novel Cannabinergic Chemotype
Author(s) -
Rishi Sharma,
Spyros P. Nikas,
Jason J. Guo,
Srikrishnan Mallipeddi,
JodiAnne T. Wood,
Alexandros Makriyannis
Publication year - 2014
Publication title -
acs medicinal chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.065
H-Index - 66
ISSN - 1948-5875
DOI - 10.1021/ml4005304
Subject(s) - chemotype , ring (chemistry) , cannabinoid , medicine , stereochemistry , computer science , pharmacology , bioinformatics , chemistry , biology , organic chemistry , receptor , chromatography , essential oil
As a part of our controlled-deactivation ligand development project, we recently disclosed a series of (-)-Δ(8)-tetrahydrocannabinols (THCs) with a metabolically labile ester group at the 2'-position of the side chain. Now, we have replaced the C-ring in the classical THC structure with a hydrolyzable seven-membered lactone. One of the synthesized analogues binds with high affinity to the CB1 receptor (K i = 4.6 nM) and exhibits much lower affinities for the mCB2 and the hCB2. Also, in vitro functional characterization found the compound to be an agonist at rCB1. Consistent with our rational design, the lead cannabinergic lactone identified here is susceptible to metabolic inactivation by plasma esterases, while the respective acid metabolite is inactive at CB receptors. These results are highlighted with molecular modeling of the two regiosomeric lactones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom