z-logo
open-access-imgOpen Access
Identification of Purine-Scaffold Small-Molecule Inhibitors of Stat3 Activation by QSAR Studies
Author(s) -
Vijay Shahani,
Peibin Yue,
Sina Haftchenary,
Wei Zhao,
Julie L. Lukkarila,
Xiaolei Zhang,
Daniel P. Ball,
Christi. a,
Patrick T. Gunning,
James Turkson
Publication year - 2010
Publication title -
acs medicinal chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.065
H-Index - 66
ISSN - 1948-5875
DOI - 10.1021/ml100224d
Subject(s) - quantitative structure–activity relationship , purine , small molecule , identification (biology) , chemistry , combinatorial chemistry , scaffold , computational biology , molecule , stereochemistry , computer science , biochemistry , biology , organic chemistry , enzyme , botany , database
To facilitate the discovery of clinically useful Stat3 inhibitors, computational analysis of the binding to Stat3 of the existing Stat3 dimerization disruptors and quantitative structure-activity relationships (QSAR) were pursued, by which a pharmacophore model was derived for predicting optimized Stat3 dimerization inhibitors. The 2,6,9-trisubstituted-purine scaffold was functionalized in order to access the three subpockets of the Stat3 SH2 domain surface and to derive potent Stat3-binding inhibitors. Select purine scaffolds showed good affinities (K(D), 0.8-12 μM) for purified, nonphosphorylated Stat3 and inhibited Stat3 DNA-binding activity in vitro and intracellular phosphorylation at 20-60 μM. Furthermore, agents selectively suppressed viability of human prostate, breast and pancreatic cancer cells, and v-Src-transformed mouse fibroblasts that harbor aberrant Stat3 activity. Studies herein identified novel small-molecule trisubstituted purines as effective inhibitors of constitutively active Stat3 and of the viability of Stat3-dependent tumor cells, and are the first to validate the use of purine bases as templates for building novel Stat3 inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom