On the Composition of the Top Layer of Microphase Separated Thin PS-PEO Films
Author(s) -
Chiara Neto,
M. R. James,
Andrew M. Telford
Publication year - 2009
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma900690e
Subject(s) - dewetting , neutron reflectometry , materials science , x ray photoelectron spectroscopy , wetting , wetting layer , thin film , reflectometry , polystyrene , copolymer , lamellar structure , chemical engineering , layer (electronics) , polymer chemistry , nanotechnology , composite material , optics , polymer , neutron scattering , time domain , physics , small angle neutron scattering , computer science , scattering , computer vision , engineering
The topography and surface composition of thin films (ca. 100 nm) of a polystyrene-b-poly(ethylene oxide) (PS-PEO) block copolymer are investigated using a suite of complementary techniques, namely tapping mode atomic force microscopy (AFM), optical microscopy, X-ray photoelectron spectroscopy (XPS), neutron reflectometry, and wettability measurements. The copolymer films separate into lamellar structures oriented parallel to the silicon substrate, and bicontintious and island/hole morphologies characteristic of this arrangement appear. Even though the crystalline topography of the film's surface and its wettability properties suggest the presence of 11130 oil the top surface, XPS and neutron reflectometry data point undoubtedly to the presence of a top layer of PS at the air/film interface. Tapping mode AFM images unequivocally demonstrate that in air only one block is present at the air/film interface. Neutron reflectometry data identify the nature of each phase-separated layer within the film. This finding differs from a model of domain arrangement proposed in a classic and much-cited paper oil these systems (Macromolecules 1979, 12, 323). After exposure to water, PEO blocks rearrange and access the top surface of the film. After many hours of thermal annealing, both PS and PEO blocks can be made to appear at the film/air interface, within isolated droplets formed upon Film dewetting. © 2009, American Chemical Societ
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom