Evaporative Organization of Hierarchically Structured Polymer Blend Rings
Author(s) -
Myunghwan Byun,
Suck Won Hong,
Feng Qiu,
Qingze Zou,
Zhiqun Lin
Publication year - 2008
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma801864n
Subject(s) - dewetting , materials science , polystyrene , polymer , phase (matter) , evaporation , polymer blend , methyl methacrylate , drop (telecommunication) , polymer chemistry , coffee ring effect , composite material , chemical engineering , wetting , nanotechnology , chemistry , copolymer , thermodynamics , telecommunications , physics , organic chemistry , computer science , engineering
We report the first study of the controlled, evaporative self-organization of a polymer blend from a restricted geometry comprised of a spherical lens upon a Si substrate (i.e., a sphere-on-flat geometry). This geometry facilitated the control over the evaporation rate of solvent, thereby eliminating the temperature gradient and the possible convective instabilities. In this study, a drop of polystyrene (PS) and poly(methyl methacrylate) (PMMA) toluene solution evaporated in the sphere-on-flat geometry. The combination of controlled, consecutive pinning-depinning cycles (i.e., “stick-slip”) of the contact line at the edge of the geometry, spontaneous phase separation of incompatible polymers at the microscopic scale, and a dewetting process in the late stage of phase segregation led to the formation of gradient, hierarchically structured polymer blend rings composed of phase- separated PS and PMMA. The topographic distribution of PS and PMMA phases on the ring surface were revealed after removal of the PS phase with a selective solvent. Namely, the trench-pit structures were formed in the PS-112K/PMMA-133K blend, while for the PS-112K/PMMA-534K blend, pit morphologies were observed. This facile approach offers a new way of simultaneously processing two or more nonvolatile components,via controlled evaporation to produce new kinds of structures with hierarchical order in a simple, robust, and one-step manner.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom