A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)
Author(s) -
Li Ping Tan,
Kathlyn A. Parker,
Nicole S. Sampson
Publication year - 2014
Publication title -
macromolecules
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma5012039
Subject(s) - bicyclic molecule , polymer chemistry , polymerization , metathesis , monomer , copolymer , ring opening polymerization , chemistry , dispersity , intramolecular force , chain transfer , ring opening metathesis polymerisation , polymer , organic chemistry , radical polymerization
Strained bicyclic carbomethoxy olefins were utilized as substrates in alternating ring-opening metathesis polymerization and found to provide low-dispersity polymers with novel backbones. The polymerization of methyl bicyclo[4.2.0]oct-7-ene-7-carboxylate with cyclohexene in the presence of the fast-initiating Grubbs catalyst (H 2 IMes)(3-Br-Pyr) 2 Cl 2 Ru=CHPh leads to a completely linear as well as alternating copolymer, as demonstrated by NMR spectroscopy, isotopic labeling, and gel permeation chromatography. In contrast, intramolecular chain-transfer reactions were observed with [5.2.0] and [3.2.0] bicyclic carbomethoxy olefins, although to a lesser extent than with the previously reported monocyclic cyclobutenecarboxylic ester monomers [Song A.; Parker K. A.; Sampson N. S.J. Am. Chem. Soc.2009, 131, 3444]. Inclusion of cyclohexyl rings fused to the copolymer backbone minimizes intramolecular chain-transfer reactions and provides a framework for creating alternating functionality in a one-step polymerization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom