Diamond Rings or Dumbbells: Controlling the Structure of Poly(ethylene glycol)–Fullerene [60] Adducts by Varying Linking Chain Length
Author(s) -
Hin Chun Yau,
Mustafa K. Bayazit,
Joachim H. G. Steinke,
Milo S. P. Shaffer
Publication year - 2014
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma501200e
Subject(s) - ethylene glycol , peg ratio , polymer chemistry , fullerene , dumbbell , proton nmr , diamond , polymer , fourier transform infrared spectroscopy , chemistry , adduct , ring (chemistry) , materials science , crystallography , chemical engineering , organic chemistry , medicine , finance , engineering , economics , physical therapy
Fullerene [60] (C60) and poly(ethylene glycol) (PEG) adducts were prepared via 1,3-dipolar cycloaddition of bis-azido-terminated linear PEG (N3-PEG-N3) and C60. While long chain length PEGs (Mn = 1000 and 3350 Da) yielded the cyclic diamond ring structures (⊂C60PEG1000⊃ and ⊂C60PEG3350⊃), short-chained PEG (Mn = 200 Da) yielded a telechelic dumbbell structure (C60-PEG200-C60). Both dumbbell and diamond ring structures were characterized by MALDI-TOF-MS, 1H NMR, FTIR, UV–vis, and elemental analysis (EA). The results highlight the structural dependence of the PEG-C60 adducts on the chain length of the azido-terminated polymer, a factor previously neglected.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom