z-logo
open-access-imgOpen Access
Poly(glycerol monomethacrylate)–Poly(benzyl methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion Polymerization: Synthesis, Characterization, and Interfacial Activity
Author(s) -
Victoria J. Cunningham,
Abdullah M. Alswieleh,
Kate L. Thompson,
Mark Williams,
Graham J. Leggett,
Steven P. Armes,
Osama M. Musa
Publication year - 2014
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma501140h
Subject(s) - chain transfer , polymer chemistry , copolymer , raft , nanoparticle , polymerization , pickering emulsion , materials science , emulsion polymerization , chemical engineering , methacrylate , chemistry , radical polymerization , organic chemistry , nanotechnology , polymer , engineering
A poly(glycerol monomethacrylate) (PGMA) macromolecular chain transfer agent has been utilized to polymerize benzyl methacrylate (BzMA) via reversible addition–fragmentation chain transfer (RAFT)-mediated aqueous emulsion polymerization. This formulation leads to the efficient formation of spherical diblock copolymer nanoparticles at up to 50% solids. The degree of polymerization (DP) of the core-forming PBzMA block has been systematically varied to control the mean particle diameter from 20 to 193 nm. Conversions of more than 99% were achieved for PGMA51–PBzMA250 within 6 h at 70 °C using macro-CTA/initiator molar ratios ranging from 3.0 to 10.0. DMF GPC analyses confirmed that relatively low polydispersities (Mw/Mn < 1.30) and high blocking efficiencies could be achieved. These spherical nanoparticles are stable to both freeze–thaw cycles and the presence of added salt (up to 0.25 M MgSO4). Three sets of PGMA51–PBzMAx spherical nanoparticles have been used to prepare stable Pickering emulsions at variou...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom