z-logo
open-access-imgOpen Access
Formation of Nanostructured Fullerene Interlayer through Accelerated Self-Assembly and Cross-Linking of Trichlorosilane Moieties Leading to Enhanced Efficiency of Photovoltaic Cells
Author(s) -
Wei-Wei Liang,
ChihYu Chang,
YuYing Lai,
Sheng-Wen Cheng,
Huan-Hsuan Chang,
Yin-Yu Lai,
YenJu Cheng,
ChienLung Wang,
ChainShu Hsu
Publication year - 2013
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma400290x
Subject(s) - trichlorosilane , materials science , fullerene , pedot:pss , triphenylamine , chemical engineering , polymer , copolymer , energy conversion efficiency , nanotechnology , photochemistry , polymer chemistry , layer (electronics) , organic chemistry , chemistry , optoelectronics , silicon , engineering , composite material
A new cross-linkable fullerene material, bis(2-(trichlorosilyl)propyl)-malonate C60 (TSMC), functionalized with two trichlorosilane groups, was easily synthesized by Pt-catalyzed olefin hydrosilylation. By making use of facile hydrolysis of the trichlorosilyl moieties, TSMC can be spontaneously self-assembled and cross-linked on the TiOx surface by a simple spin-coating processing without the aid of photoirradiation or post-thermal treatments. The rapid formation of self-assembled and cross-linked TSMC (SA-C-TSMC) effectively passivates the residual hydroxyl groups on the TiOx surface. More significantly, the solvent-resistant TSMC network features a nanostructured surface to provide extra charge-generating interfacial area and straight electron transport pathways. The device (ITO/TiOx/SA-C-TSMC/P3HT:PC61BM (1:1, w/w)/PEDOT:PSS/Ag) with this C60 interlayer exhibited an efficiency of 3.9% which greatly outperformed the device without this layer. Furthermore, the strategy can also be effectively applied to ...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom