High Crystallinity and Nature of Crystal−Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene)
Author(s) -
Ovidiu Pascui,
Ruth H. Lohwasser,
Michael Sommer,
Mukundan Thelakkat,
Thomas ThurnAlbrecht,
Kay Saalwächter
Publication year - 2010
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma102205t
Subject(s) - crystallinity , materials science , crystal (programming language) , phase (matter) , alkyl , polymer , crystallography , phase transition , enthalpy , polymer chemistry , chemistry , organic chemistry , thermodynamics , composite material , computer science , programming language , physics
Molecular weight and stereoregularity affect the morphology and the crystallinity of conjugated polymers and are thus of pivotal relevance for the mobility of charge carriers in electro-optical device applications. Currently, poly(3-akylthiophenes) are discussed as one of the most promising classes of materials for photovoltaic applications. Here, we use 13C solid-state NMR to determine the crystallinity and details on crystal−crystal phase transformations in regioregular head-to-tail poly(3-hexylthiophene) of well-defined molecular weight and demonstrate that the crystallinity was previously severely underestimated. Typical crystallinities are at least around 37% for the lowest molecular weights and as high as about 64% upon increasing MW, corresponding to a corrected maximum value for the reference melting enthalpy of ΔHm∞ ≈ 37 J/g for use in DSC experiments. Using 1D 13C spectra and 2D experiments that measure the strength of 13C−1H dipolar couplings, we observe that the crystal−crystal phase transitio...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom