z-logo
open-access-imgOpen Access
Saloplastic Macroporous Polyelectrolyte Complexes: Cartilage Mimics
Author(s) -
Haifa H. Hariri,
Joseph B. Schlenoff
Publication year - 2010
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/ma1012978
Subject(s) - polyelectrolyte , ionic strength , ultimate tensile strength , chemical engineering , chemistry , porosity , osmotic pressure , materials science , polymer chemistry , aqueous solution , polymer , composite material , organic chemistry , biochemistry , engineering
Complexes of sodium poly(4-styrenesulfonate) (NaPSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were formed on mixing equimolar solutions in high salt concentration. Under ultracentrifugal fields, the complex precipitates were transformed into compact polyelectrolyte complexes (CoPECs), which showed extensive porosity. The mechanical properties of CoPECS make them attractive for bioimplants and tissue engineering applications. Free NaPSS chains in the closed pores of CoPECs create excess osmotic pressure, which controls the pore size and contributes to the mechanical resistance of the material. The mechanical properties of CoPECs, modulated by the ionic strength of the doping medium, were studied by uniaxial tensile testing and the stress-strain data were fit to a three-element Maxwell model which revealed at least two regimes of stress relaxation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom