A Study of the Dynamic Interaction of Surfactants with Graphite and Carbon Nanotubes using Fmoc−Amino Acids as a Model System
Author(s) -
Yanning Li,
Brian G. Cousins,
Rein V. Ulijn,
Ian A. Kinloch
Publication year - 2009
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la9011636
Subject(s) - chemistry , carbon nanotube , adsorption , graphite , carbon fibers , amino acid , tryptophan , organic chemistry , phenylalanine , materials science , nanotechnology , composite number , biochemistry , composite material
We have studied the dynamic interaction of surfactants with carbon surfaces by using a series of Fmoc- (N-(fluorenyl-9-methoxycarbonyl)) terminated amino acid derivatives (Fmoc-X, where X is glycine, tyrosine, phenylalanine, tryptophan, or histidine) as a model system. In these systems, highly conjugated fluorenyl groups and aromatic amino acid side chains interact with the carbon surface, while carboxylate groups provide an overall negative charge. Ideal carbon surfaces were selected which possessed either predominantly macroscale (graphite) or nanoscale features (multiwalled carbon nanotube (MWNT) mats). The adsorption equilibrium for the Fmoc-X solutions with the graphitic surfaces was well-described by the Freundlich model. When a library containing various Fmoc-X compounds were exposed to a target graphite surface, Fmoc-tryptophan was found to bind preferentially at the expense of the other components present, leading to a substantial difference in the observed binding behavior compared to individual adsorption experiments. This approach therefore provides a straightforward means to identify good surfactants within a library of many candidates. Finally, the fully reversible nature of Fmoc-X binding was demonstrated by switching the surface chemistry of carbon substrate through sequential exposure to surfactants with increasing binding energies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom