Ion Specific Electrolyte Effects on Thin Film Drainage in Nonaqueous Solvents Propylene Carbonate and Formamide
Author(s) -
Christine L. Henry,
Stoyan I. Karakashev,
Phong Thanh Nguyen,
Anh V. Nguyen,
Vincent S. J. Craig
Publication year - 2009
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la901099g
Subject(s) - electrolyte , propylene carbonate , thin film , formamide , pulmonary surfactant , chemistry , carbonate , chemical engineering , inorganic chemistry , materials science , organic chemistry , nanotechnology , electrode , biochemistry , engineering
Electrolytes have been found to stabilize thin films in nonaqueous solvents propylene carbonate and formamide, in the absence of surfactant. The thin film balance microinterferometry technique has been used to measure film lifetimes, drainage kinetics, and rupture thicknesses for thin films between air-nonaqueous solution interfaces. Electrolytes that were previously found to inhibit bubble coalescence in bulk bubble column measurements also increase the lifetimes of individual thin films across a similar concentration range (from 0 to 0.3 M). We report that increasing the concentration of inhibiting electrolyte stabilizes the thin liquid film in two ways: the rate of film drainage decreases, and the film reaches a lower thickness before rupturing. In contrast, noninhibiting electrolyte shows little to no effect on film stability. We have here demonstrated that both drainage and rupture processes are affected by the addition of electrolyte and the effect on the thin film is thus ion specific.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom