Bubble Formation Dynamics in Various Flow-Focusing Microdevices
Author(s) -
Nicolas Dietrich,
Souhila Poncin,
N. Midoux,
Huai Li
Publication year - 2008
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la802008k
Subject(s) - bubble , microscale chemistry , liquid bubble , surface tension , mechanics , volumetric flow rate , flow (mathematics) , particle image velocimetry , mixing (physics) , flow focusing , micromixer , materials science , viscosity , velocimetry , microfluidics , nanotechnology , thermodynamics , physics , composite material , mathematics , turbulence , mathematics education , quantum mechanics
The aim of this study is to investigate three types of gas-liquid micromixer geometries, including a cross-shape and two converging shape channels for the bubble formation in different liquids. The bubble shape, size, and formation mechanism were investigated under various experimental conditions such as the flow rates of two phases, physical properties of the liquid, and mixer geometries. A micro particle image velocimetry technique and a high-speed camera were used to characterize and quantify gas-liquid flows. It was revealed that the bubble formation, in particular the bubble size, depends on the geometry of the mixing section between two phases. A correlation gathering numerous experimental data was elaborated for the estimation of the bubble size. The influence of different parameters such as the flow rate ratio between two phases, surface tension, and liquid viscosity is well taken into consideration on the basis of the understanding of the bubble formation mechanism at the microscale. This paper marks an original improvement in the domain where no flow field characterizations or correlations were established in flow-focusing devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom