z-logo
open-access-imgOpen Access
Preparation and Characterization of 4-Dimethylaminopyridine-Stabilized Palladium Nanoparticles
Author(s) -
Keith A. Flanagan,
James A. Sullivan,
Helge MuellerBunz
Publication year - 2007
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la7015897
Subject(s) - palladium , chemistry , nanoparticle , catalysis , dispersion (optics) , inorganic chemistry , aqueous solution , nuclear chemistry , materials science , organic chemistry , nanotechnology , physics , optics
4-Dimethylaminopyridine (DMAP)-stabilized palladium nanoparticles with a mean diameter of 3.4 +/- 0.5 nm are prepared from the aqueous phase reduction of Na2PdCl4 using NaBH4 in the presence of DMAP. TEM and UV-vis spectroscopy characterization of the nanoparticle dispersion shows no obvious change in the nanoparticles several months after preparation. 1H NMR spectroscopy of the nanoparticles shows that the nanoparticle dispersion also contains a boron/DMAP complex and two palladium/DMAP complexes. One of the palladium complexes crystallizes out of the dispersion and is identified as Pd(DMAP)4(OH)2 by X-ray crystallography. Following extensive analysis, it is believed that the palladium/DMAP complexes are formed following the oxidation of the palladium nanoparticles. The prepared nanoparticle dispersion promotes selective hydrogen/deuterium (H/D) exchange on the carbon atoms alpha to the endocyclic nitrogen atom on the DMAP-stabilizing ligands through reaction with D2O. This activity is attributed to the presence of the nanoparticles rather than to the presence of the oxidized palladium/DMAP complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom