z-logo
open-access-imgOpen Access
Methacrylation Induces Rapid, Temperature-Dependent, Reversible Self-Assembly of Type-I Collagen
Author(s) -
Kathryn E. Drzewiecki,
Avanish Singh Parmar,
Ian D. Gaudet,
Jonathan R. Branch,
Douglas H. Pike,
Vikas Nanda,
David I. Shreiber
Publication year - 2014
Publication title -
langmuir
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la502418s
Subject(s) - self healing hydrogels , photoinitiator , dynamic mechanical analysis , rheology , materials science , biophysics , type i collagen , dynamic light scattering , methacrylate , chemical engineering , polymer chemistry , chemistry , polymer , nanotechnology , polymerization , monomer , composite material , medicine , pathology , nanoparticle , engineering , biology
Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In this study, type-I collagen is modified to introduce methacrylate groups on the free amines of the lysine residues to create collagen methacrylamide (CMA). CMA retains the properties of collagen such as self-assembly, biodegradability, and natural bioactivity but is also photoactive and can be rapidly cross-linked or functionalized with acrylated molecules when irradiated with ultraviolet light in the presence of a photoinitiator. CMA also demonstrates unique temperature-dependent behavior. For natural type-I collagen, the overall structure of the fiber network remains largely static over time scales of a few hours upon heating and cooling at temperatures below its denaturation point. CMA, however, is rapidly thermoreversible and will oscillate between a liquid macromer suspension and a semisolid fibrillar hydrogel when the temperature is modulated between 10 and 37 °C. Using a series of mechanical, scattering, and spectroscopic methods, we demonstrate that structural reversibility is manifest across multiple scales from the protein topology of the triple helix up through the rheological properties of the CMA hydrogel. Electron microscopy imaging of CMA after various stages of heating and cooling shows that the canonical collagen-like D-periodic banding ultrastructure of the fibers is preserved. A rapidly thermoreversible collagen-based hydrogel is expected to have wide utility in tissue engineering and drug delivery applications as a biofunctional, biocompatible material. Thermal reversibility also makes CMA a powerful model for studying the complex process of hierarchical collagen self-assembly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom