z-logo
open-access-imgOpen Access
Accurate Measurement of the Molecular Thickness of Thin Organic Shells on Small Inorganic Cores Using Dynamic Light Scattering
Author(s) -
Matthew P. Shortell,
Joseph F. S. Fernando,
Esa Jaatinen,
Eric R. Waclawik
Publication year - 2014
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la403391t
Subject(s) - dynamic light scattering , scattering , characterization (materials science) , nanoparticle , molecular dynamics , shell (structure) , materials science , chemical physics , monolayer , light scattering , diffusion , core (optical fiber) , nanostructure , nanotechnology , chemistry , optics , thermodynamics , physics , computational chemistry , composite material
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from material characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures, but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and, hence, can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume- and number-weighted distributions. With the introduction of a simple correction formula that more accurately yields hydrodynamic size distributions, a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that, on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom