z-logo
open-access-imgOpen Access
Ultrasound-Assisted Synthesis of Mesoporous Zirconia-Hydroxyapatite Nanocomposites and Their Dual Surface Affinity for Cr3+/Cr2O72– Ions
Author(s) -
Karima Achelhi,
Sylvie Masse,
Guillaume Laurent,
Cécile Roux,
A. Laghzizil,
Ahmed Saoiabi,
Thibaud Coradin
Publication year - 2011
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la2029643
Subject(s) - cubic zirconia , apatite , materials science , chemical engineering , nanocomposite , zirconium , mesoporous material , adsorption , microporous material , sorption , mineralogy , composite material , chemistry , ceramic , organic chemistry , metallurgy , engineering , catalysis
Zirconia-hydroxyapatite nanocomposites were prepared by sol-gel deposition of zirconium oxide from a zirconium alkoxide in the presence of apatite colloidal suspension under ultrasonication. The material porosity evolves from mainly microporous zirconia to mesoporous hydroxyapatite, with decreasing surface area and increasing pore volume. XRD studies indicate that the apatite phase is well-preserved within the composite materials. The homogeneous dispersion of apatite colloids within the zirconia network was supported by TEM observations and nitrogen sorption measurements. (31)P solid-state NMR studies suggest that partial dissolution of apatite may have occurred during the preparation, leading to the adsorption of phosphate species on zirconia particles. This is confirmed by XRD studies of nanocomposites after thermal treatment that demonstrate the preferred formation of tetragonal over monoclinic ZrO(2) in the presence of hydroxyapatite. In order to investigate the surface properties of these novel materials, the adsorption of Pb(2+), Cr(3+), and Cr(2)O(7)(2-) was evaluated. Metal cations were preferentially adsorbed on apatite-rich composites, whereas Cr(2)O(7)(2-) shows a good affinity for the zirconia-rich phases. Zirconia-apatite materials showed the most promising performance in terms of recyclability. These nanocomposites that combine microporosity, mesoporosity and dual sorption properties for these species appear as interesting materials for metal ion remediation and may also find applications as biomaterials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom