z-logo
open-access-imgOpen Access
Self-Excited Drop Oscillations in Electrowetting
Author(s) -
JeanChristophe Baret,
M. Decré,
Frieder Mugele
Publication year - 2006
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la062149f
Subject(s) - electrowetting , surface tension , drop (telecommunication) , mechanics , capillary action , electrode , chemistry , optics , voltage , viscosity , electrohydrodynamics , millimeter , materials science , physics , thermodynamics , composite material , quantum mechanics , telecommunications , computer science
We studied millimeter-sized aqueous sessile drops in an ambient oil environment in a classical electrowetting configuration with a wire-shaped electrode placed at a variable height above the substrate. Within a certain range of height and above a certain threshold voltage, the drop oscillates periodically between two morphologies where it is either attached to the wire or detached from it. We determine the range of control parameters, wire height, and voltage in which oscillations occur and explain it by a simple capillary model. Furthermore, we analyze the dynamics of the oscillations using high-speed video microscopy and numerical fluid dynamics modeling. We develop a one-dimensional harmonic oscillator model that describes the dependence of the drop oscillations on the relevant intrinsic (surface tension, viscosity, density) and extrinsic (wire height, voltage) parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom