Dynamic Electrophoresis of a Droplet in a Spherical Cavity
Author(s) -
Eric Lee,
WeiLun Min,
JyhPing Hsu
Publication year - 2006
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/la0533821
Subject(s) - electrophoresis , electric field , viscosity , double layer (biology) , phase (matter) , chemistry , boundary layer , mechanics , materials science , layer (electronics) , molecular physics , nanotechnology , physics , composite material , chromatography , organic chemistry , quantum mechanics
The electrophoretic behavior of a droplet in a spherical cavity subject to an alternating electric field is analyzed theoretically under the conditions of an arbitrary level of surface potential and double-layer thickness. The influences of the thickness of the double layer, the level of surface potential, the size of a droplet, the viscosity of the droplet fluid, and the frequency of the applied electric field on the electrophoretic behavior of a droplet are examined through numerical simulations. We show that, because of the effect of double-layer deformation, the magnitude of the electrophoretic mobility of a droplet could have a local maximum and the phase angle could have a negative (phase lead) local minimum as the frequency of the applied electric field varies. In general, the lower the surface potential, the thicker the double layer and the larger the viscosity of the droplet fluid, and the more significant the boundary effect, the smaller the magnitude of the electrophoretic mobility of a droplet.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom