z-logo
open-access-imgOpen Access
Ion Mobility Unlocks the Photofragmentation Mechanism of Retinal Protonated Schiff Base
Author(s) -
Neville J. A. Coughlan,
Brian D. Adamson,
Katherine J. Catani,
Uta Wille,
Evan J. Bieske
Publication year - 2014
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz501407n
Subject(s) - chemistry , photoisomerization , protonation , schiff base , photochemistry , polyene , fragmentation (computing) , molecule , mass spectrum , ion , isomerization , stereochemistry , organic chemistry , computer science , operating system , catalysis
Retinal protonated Schiff base (RPSB) is a key molecular component of biological photoreceptors and bacterial photosynthetic structures, where its action involves photoisomerization around bonds in the polyene chain. In a vacuum environment, collisional activation or exposure to visible light causes the RPSB molecule to disintegrate, producing charged molecular fragments with m/z = 248 Da that cannot be formed by simple cleavage of the polyene chain. Photofragments resulting from laser excitation of RPSB at a wavelength of 532 nm are analyzed in an ion mobility mass spectrometer (IMMS) and found to be the protonated Schiff base of β-ionone. Density functional theory calculations at the M06-2X/cc-pVDZ level support a fragmentation mechanism in which RPSB undergoes an electrocyclization/fragmentation cascade with the production of protonated Schiff base of β-ionone and toluene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom