z-logo
open-access-imgOpen Access
Detailed Examination of a Single Conduction Event in a Potassium Channel
Author(s) -
P. W. Fowler,
Oliver Beckstein,
E. Abad,
Mark S.P. Sansom
Publication year - 2013
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz4014079
Subject(s) - ion , thermal conduction , potassium , potassium channel , chemical physics , filter (signal processing) , molecular dynamics , chemistry , molecule , physics , biophysics , computer science , thermodynamics , computational chemistry , organic chemistry , biology , computer vision
Although extensively studied, it has proved difficult to describe in detail how potassium ion channels conduct cations and water. We present a computational study that, by using stratified umbrella sampling, examines nearly an entire conduction event of the Kv1.2/2.1 paddle chimera and thereby identifies the expected stable configurations of ions and waters in the selectivity filter of the channel. We describe in detail the motions of the ions and waters during a conduction event, focusing on how waters and ions enter the filter, the rotation of water molecules inside the filter, and how potassium ions are coordinated as they move from a water to a protein environment. Finally, we analyze the small conformational changes undergone by the protein, showing that the stable configurations are most similar to the experimental crystal structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom