Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors
Author(s) -
Wei Zhou,
Yi Hua,
Mark D. Huntington,
Teri W. Odom
Publication year - 2012
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz300318v
Subject(s) - delocalized electron , harmonics , plasmon , lattice (music) , condensed matter physics , materials science , localized surface plasmon , surface plasmon , molecular physics , physics , optoelectronics , quantum mechanics , voltage , acoustics
This Letter describes how out-of-plane lattice plasmon (OLP) resonances in 2D Au nanoparticle (NP) arrays show dispersive quality factors. These quality factors can be tailored simply by controlling NP height. Numerical calculations of near-field optical properties and band diagrams were performed to understand the measured dispersion effects of the OLPs. The results revealed that delocalized OLPs are a type of surface Bloch mode composed of many Bloch harmonics. As the OLP dispersion evolves from a stationary state to a propagating state, the nonradiative loss decreases because of weak local field confinement, whereas the radiative loss increases because of strong coupling to the leaky zero-order harmonic.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom