Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy
Author(s) -
Sulayman A. Oladepo,
Kan Xiong,
Zhenmin Hong,
Sanford A. Asher
Publication year - 2011
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/jz101619f
Subject(s) - ramachandran plot , chemistry , folding (dsp implementation) , protein folding , resonance raman spectroscopy , peptide bond , peptide , crystallography , protein secondary structure , protein structure , resonance (particle physics) , molecular dynamics , chemical physics , raman spectroscopy , energy landscape , computational chemistry , physics , biochemistry , atomic physics , optics , electrical engineering , engineering
UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the Amide III(3) band and the C(α)-H band frequencies and intensities can be used to determine Ramachandran Ψ angle distributions for peptide bonds. These incisive, quantitative glimpses into conformation can be combined with kinetic T-jump methodologies to monitor the dynamics of biomolecular conformational transitions. The resulting UVRR structural insight is impressive in that it allows differentiation of, for example, different α-helix-like states that enable differentiating π- and 3(10)- states from pure α-helices. These approaches can be used to determine the Gibbs free energy landscape of individual peptide bonds along the most important protein (un)folding coordinate. Future work will find spectral monitors that probe peptide bond activation barriers that control protein (un)folding mechanisms. In addition, UVRR studies of sidechain vibrations will probe the role of side chains in determining protein secondary, tertiary and quaternary structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom