z-logo
open-access-imgOpen Access
Optical Absorption Spectra of Nanocrystal Gold Molecules
Author(s) -
Marcos M. Alvarez,
Joseph T. Khoury,
T. Gregory Schaaff,
Marat N. Shafigullin,
Igor Vezmar,
Robert L. Whetten
Publication year - 1997
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp962922n
Subject(s) - crystallite , nanocrystal , absorption spectroscopy , spectral line , materials science , absorption (acoustics) , molecular physics , effective mass (spring–mass system) , analytical chemistry (journal) , chemistry , chemical physics , crystallography , optics , nanotechnology , physics , astronomy , composite material , chromatography , quantum mechanics
The optical absorption spectra of a series of nanocrystal gold moleculesslarger, crystalline Au clusters that are passivated by a compact monolayer of n-alkylthiol(ate)sshave been measured across the electronic range (1.1-4.0 eV) in dilute solution at ordinary temperature. Each of the20 samples, ranging in effective core diameter from 1.4 to 3.2 nm (70 to800 Au atoms), has been purified by fractional crystallization and has undergone a separate compositional and structural characterization by mass spectrometry and X-ray diffraction. With decreasing core mass (crystallite size) the spectra uniformly show a systematic evolution, specifically (i) a broadening of the so-called surface-plasmon band until it is essentially unidentifiable for crystallites of less than 2.0 nm effective diameter, (ii) the emergence of a distinct onset for strong absorption near the energy (1.7 eV) of the interbandgap (5d f 6sp), and (iii) the appearance in the smallest crystallites of a weak steplike structure above this onset, which is interpreted as arising from a series of transitions from the continuum d-band to the discrete level structure of the conduction band just above the Fermi level. The classical electrodynamic (Mie) theory, based on bulk optical properties, can reproduce this spectral evolutionsand thereby yield a consistent core-sizingsonly by making a strong assumption about the surface chemical interaction. Quantitative agreement with the spectral line shape requires a size-dependent offset of the frequency-dependent dielectric function, which may be explained by a transition in electronic structure just below 2.0 nm (200 atoms), as proposed earlier.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom