Excited-State Intramolecular Hydrogen Atom Transfer of Curcumin in Surfactant Micelles
Author(s) -
Ramkrishna Adhikary,
Philip J. Carlson,
Tak W. Kee,
Jacob W. Petrich
Publication year - 2010
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp9101527
Subject(s) - micelle , chemistry , sodium dodecyl sulfate , photochemistry , excited state , ammonium bromide , solvation , pulmonary surfactant , curcumin , cationic polymerization , photon upconversion , organic chemistry , aqueous solution , molecule , ion , biochemistry , physics , nuclear physics
Femtosecond fluorescence upconversion experiments were performed on the naturally occurring medicinal pigment, curcumin, in anionic, cationic, and neutral micelles. In our studies, the micelles are composed of sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium bromide (DTAB), and triton X-100 (TX-100). We demonstrate that the excited-state kinetics of curcumin in micelles have a fast (3-8 ps) and slow (50-80 ps) component. While deuteration of curcumin has a negligible effect on the fast component, the slow component exhibits a pronounced isotope effect of approximately 1.6, indicating that micelle-captured curcumin undergoes excited-state intramolecular hydrogen atom transfer. Studies of solvation dynamics of curcumin in a 10 ps time window reveal a fast component (< or = 300 fs) followed by a 8, 6, and 3 ps component in the solvation correlation function for the TX-100, DTAB, and SDS micelles, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom