z-logo
open-access-imgOpen Access
Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene Organic Semiconductor
Author(s) -
Roel S. SánchezCarrera,
Sule Atahan,
Joshua Schrier,
Alán AspuruGuzik
Publication year - 2010
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp910102f
Subject(s) - organic semiconductor , pentacene , intermolecular force , thiophene , intramolecular force , electron mobility , chemical physics , chemistry , semiconductor , computational chemistry , materials science , crystal engineering , molecule , crystal (programming language) , crystallography , crystal structure , supramolecular chemistry , stereochemistry , optoelectronics , organic chemistry , thin film transistor , electrode , computer science , programming language
Recently, an optimum mobility of 8.3 cm2/(Vs) has been measured for single-crystal organic field-effect transistors based on the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT) molecule. Here, on the basis of quantum chemistry calculations and molecular dynamics simulations, we investigate the microscopic charge transport parameters of the DNTT molecule and crystal. Our findings confirm that the moderate anisotropy of the hole mobility in DNTT is highly dependent on the presence of in-plane herringbonelike intermolecular interactions with large electronic coupling (transfer integral) values (ca. 0.1 eV). Also, we demonstrate that the π-extended heteroaromatic structure leads to strong electronic coupling interactions among neighboring molecules and to a decrease of the intramolecular reorganization energy. In DNTT, thermal modulations of the electronic couplings at 300 K remain small when compared to those exhibited by the pentacene single crystal. This theoretical study suggests that heteroacenes ...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom