z-logo
open-access-imgOpen Access
Reaction Dynamics of O(1D,3P) + OCS Studied with Time-Resolved Fourier Transform Infrared Spectroscopy and Quantum Chemical Calculations
Author(s) -
Hung-Chu Chiang,
NiannShiah Wang,
Soji Tsuchiya,
HsinTsung Chen,
YuanPern Lee,
M. C. Lin
Publication year - 2009
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp903976z
Subject(s) - fourier transform , infrared , fourier transform infrared spectroscopy , fourier transform spectroscopy , spectroscopy , infrared spectroscopy , physics , chemistry , atomic physics , quantum chemical , analytical chemistry (journal) , quantum mechanics , molecule , chromatography
Time-resolved infrared emission of CO(2) and OCS was observed in reactions O((3)P) + OCS and O((1)D) + OCS with a step-scan Fourier transform spectrometer. The CO(2) emission involves Deltanu(3) = -1 transitions from highly vibrationally excited states, whereas emission of OCS is mainly from the transition (0, 0 degrees , 1) --> (0, 0 degrees , 0); the latter derives its energy via near-resonant V-V energy transfer from highly excited CO(2). Rotationally resolved emission lines of CO (v <or= 4 and J <or= 30) were also observed in the reaction O((1)D) + OCS. For O((3)P) + OCS, weak emission of CO(2) diminishes when Ar is added, indicating that O((3)P) is translationally hot to overcome the barrier for CO(2) formation. The band contour of CO(2) agrees with a band shape simulated on the basis of a Dunham expansion model of CO(2); the average vibrational energy of CO(2) in this channel is 49% of the available energy. This vibrational distribution fits with that estimated through a statistical partitioning of energy E* congruent with 18,000 +/- 500 cm(-1) into all vibrational modes of CO(2). For the reaction of O((1)D) + OCS, approximately 51% of the available energy is converted into vibrational energy of CO(2), and a statistical prediction using E* congruent with 30,000 +/- 500 cm(-1) best fits the data. The mechanisms of these reactions are also investigated with the CCSD(T)/6-311+G(3df)//B3LYP/6-311+G(3df) method. The results indicate that the triplet O((3)P) + OCS(X(1)Sigma(+)) surface proceeds via direct abstraction and substitution channels with barriers of 27.6 and 36.4 kJ mol(-1), respectively, to produce SO(X(3)Sigma(-)) + CO(X(1)Sigma(+)) and S((3)P) + CO(2)(X(1)A(1)), whereas two intermediates, OSCO and SC(O)O, are formed from the singlet O((1)D) + OCS(X(1)Sigma(+)) surface without barrier, followed by decomposition to SO(a(1)Delta) + CO(X(1)Sigma(+)) and S((1)D) + CO(2)(X(1)A(1)), respectively. For the ground-state reaction O((3)P) + OCS(X(1)Sigma(+)), the singlet-triplet curve crossings play important roles in the observed kinetics and chemiluminescence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom