Photoelectrochemical Detection of Oxidative DNA Damage Induced by Fenton Reaction with Low Concentration and DNA-Associated Fe2+
Author(s) -
Suping Jia,
Minmin Liang,
LiangHong Guo
Publication year - 2008
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp711528z
Subject(s) - dna , chemistry , oxidative phosphorylation , oxidative damage , dna damage , fenton reaction , photochemistry , radiochemistry , oxidative stress , hydrogen peroxide , biochemistry
The metal ion dependent decomposition of hydrogen peroxide, the so-called Fenton Reaction, yields hydroxyl radicals that can cause oxidative DNA damage both in vitro and in vivo. We have previously reported a photoelectrochemical sensor for the detection of oxidative DNA damage induced by an Fe(2+)-mediated Fenton Reaction, using a DNA intercalator as a photoelectrochemical signal reporter (Liang, M.; Guo, L.-H. Environ. Sci. Technol. 2007, 41, 658). The intercalator binds less to the damaged DNA in the sensor film than the native form, resulting in a reduction in the measured photocurrent. In this report, some mechanistic aspects of the sensor were investigated. It was found that Fe(2+) alone (without the coexistence of H(2)O(2)) suppressed the photocurrent of the intercalator bound to the DNA film in a pH-dependent manner. Similar pH dependence was observed for the zeta potential of the tin oxide nanoparticle colloid used in the preparation of the semiconductor electrode, leading to the hypothesis that the metal ion binds to the surface oxide groups on the electrode and quenches the photoelectrochemical response. At pH 3, the quenching effect was reduced substantially to permit the detection of DNA damage by as low as 10 muM Fe(2+) and 40 microM H(2)O(2), a concentration that is within the physiologically relevant range. It was also found that Fe2+ ions associated with the DNA in the sensor film and participated in the DNA damage reaction, a mechanism that has been implicated in previous studies on metal carcinogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom