z-logo
open-access-imgOpen Access
Formation and Thermal Stability of Au2O3on Gold Nanoparticles: Size and Support Effects
Author(s) -
Luis K. Ono,
Beatriz Roldán Cuenya
Publication year - 2008
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp711277u
Subject(s) - x ray photoelectron spectroscopy , desorption , nanoparticle , thermal stability , oxygen , oxide , thermal desorption spectroscopy , cluster (spacecraft) , materials science , colloidal gold , thermal decomposition , gold cluster , analytical chemistry (journal) , thermal desorption , nanotechnology , chemistry , chemical engineering , density functional theory , adsorption , computational chemistry , organic chemistry , chromatography , computer science , engineering , metallurgy , programming language
Gold nanoparticles with two different size distributions (average sizes of ∼1.5 and ∼5 nm) have been synthesized by inverse micelle encapsulation and deposited on reducible (TiO2) and nonreducible (SiO2) supports. The thermal and chemical stability of oxidized gold species formed upon cluster exposure to atomic oxygen have been investigated in ultrahigh vacuum using a combination of temperature-, time- and CO dosing-dependent X-ray photoelectron spectroscopy (XPS), as well as temperature-programmed desorption (TPD). Our work demonstrates that (a) low-temperature (150 K) exposure to atomic oxygen leads to the formation of surface as well as subsurface gold oxide on Au nanoparticles, (b) the presence of the reducible TiO2 substrate leads to a lower gold oxide stability compared to that on SiO2, possibly because of a TiO2 oxygen vacancy-mediated decomposition process, (c) heating to 550 K (Au/SiO2) and 300 K (Au/TiO2) leads to a near-complete reduction of small (∼1.5 nm) NPs while a partial reduction is obse...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom