Photoswitching of Salicylidene Methylamine: A Theoretical Photodynamics Study
Author(s) -
Lasse Spörkel,
Joanna Jankowska,
Walter Thiel
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp5095678
Subject(s) - photochromism , methylamine , intramolecular force , chemistry , schiff base , excited state , molecule , photochemistry , imine , computational chemistry , chemical physics , atomic physics , physics , stereochemistry , catalysis , biochemistry , organic chemistry
Photoswitching of simple photochromic molecules attracts substantial attention because of its possible role in future photon-driven molecular electronics. Here we model the full photoswitching cycle of a minimal photochromic Schiff base-salicylidene methylamine (SMA). We perform semiempirical nonadiabatic on-the-fly photodynamics simulations at the OM2/MRCI level and thoroughly analyze the structural time evolution and switching efficiency of the system. We also identify and examine in detail the crucial steps in the SMA photochemistry ruled by excited-state intramolecular proton transfer. The results place the investigated model aromatic Schiff base among the promising candidates for novel photoswitching molecular materials. Our study also shows the potential of the semiempirical multireference photodynamics simulations as a tool for early stage molecular photodevice design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom