Two-Dimensional Vibrational Spectroscopy of a Dissipative System with the Optimized Mean-Trajectory Approximation
Author(s) -
Mallory Alemi,
Roger F. Loring
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp5076884
Subject(s) - semiclassical physics , trajectory , anharmonicity , dissipative system , dephasing , physics , limit (mathematics) , harmonic oscillator , line (geometry) , harmonic , statistical physics , classical mechanics , quantum mechanics , mathematical analysis , mathematics , geometry , quantum
The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions representing radiation-matter interactions. Here we apply this method to an anharmonic chromophore coupled to a harmonic bath. A forward-backward trajectory implementation of the OMT method is described that addresses the numerical challenges of applying the OMT to large systems with disparate frequency scales. The OMT is shown to well reproduce line shapes and waiting time dynamics in the pure dephasing limit of weak coupling to an off-resonant bath. The OMT is also shown to describe a case where energy transfer is the predominant source of line broadening.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom