z-logo
open-access-imgOpen Access
SSB Binding to Single-Stranded DNA Probed Using Solid-State Nanopore Sensors
Author(s) -
Deanpen Japrung,
Azadeh Bahrami,
Achim Nadzeyka,
Lloyd Peto,
S. Bauerdick,
Joshua B. Edel,
Tim Albrecht
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp506832u
Subject(s) - nanopore , dna , nanopore sequencing , chemistry , biophysics , nanotechnology , materials science , biology , dna sequencing , biochemistry
Single-stranded DNA (ssDNA) binding protein plays an important role in the DNA replication process in a wide range of organisms. It binds to ssDNA to prevent premature reannealing and to protect it from degradation. Current understanding of SSB/ssDNA interaction points to a complex mechanism, including SSB motion along the DNA strand. We report on the first characterization of this interaction at the single-molecule level using solid-state nanopore sensors, namely without any labeling or surface immobilization. Our results show that the presence of SSB on the ssDNA can control the speed of nanopore translocation, presumably due to strong interactions between SSB and the nanopore surface. This enables nanopore-based detection of ssDNA fragments as short as 37 nt, which is normally very difficult with solid-state nanopore sensors, due to constraints in noise and bandwidth. Notably, this fragment is considerably shorter than the 65 nt binding motif, typically required for SSB binding at high salt concentrations. The nonspecificity of SSB binding to ssDNA further suggests that this approach could be used for fragment sizing of short ssDNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom